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SUMMATION OF ELLIPSOIDS IN THE GUARANTEED ESTIMATION PROELEM* 

Yu. N. PESHETNYAK 

The problem of the guaranteed estimation of the phase space of a linear 
dynamic system when there are independent external disturbances of 
bounded magnitude is considered, Some mathods of approximate guaranteed 
estimation by ellipsoids were developed in /l-4/. In this paper, we 
construct an approximation by an ellipsoid which is optimal in the sense 
of a general performance criterion - the Minkowski sum of ellipsoids. 
Some basic properties of the operation are indicated. The results are 
applied to estimate the reachability region of a mull-input linear 
controlled system. 

1. !r&e basic ~robZem. 

We denote by E(u, Q) the ellipsoid {x; (Q'(z - a), z-a),< 1). Here z is an n-dimen- 
sional vector, a is the n-dimensional wctor of the centre of the ellipsoid, Q is an nxn 
symmetric positive definite matrix, and (a, b) is the scalar product of the vectors a end b. 

An equivalent &finition of the ellipsoid may be written in the form 

E (a, Q) = (5; b, Y) < (a, 14 i- (Q% Y% VY ER") 0.~1 

which indicates that the supporting function of the ellipsoidal set ffiG.,Q) (d = =P,EE(.,Q) 6% 

y) is defined by the formula Hsfa,oj (y) = (a, g) + (Qy, y)l/s (see, e.g., 131). 
Formula (1.1) enables us to extend the definition of E(a,Q) to the degenerate case, 

when some of the ellipsoid axes are of length zero, which corresponds to a singular matrix Q. 
Henceforth, the indices i, j take the values I,&..., m; summation ovsr these indices 

is from 1 to tn. 
Consider the Minkowski sum of m ellipsoids, 

The condition that the ellipsoid E(a,Q) includes the region 'ii can be written as 

(a, Y) 4 (QY, I/)% >:Wi, ~1 + (QCA YFI. VY E R" VI 

Here we have used the fact that the supporting function of the sum of non-empty convex 
sets is equal to the sum of the supporting functions of these sets and that the inclusion 
&CD, of closed convex sets D, and D, is equivalent to the inequality Hnl<Hs, (see, 
e.g., /S/l. 

The inequality (1.2) holds, in particular, for y' = --y. Adding the inequalities (1.2) 
fory andy', we obtain a constraint on the matrix & alone: 

(QQY, Y)"* > z (Qibrt ~f"*t %siER= (1.3) 

Clearly, if inequality (1.3) holds and a= &, then inequality (1.2) also holds. 
The matrix @ satisfying (1.3) is chosen so that 

L (Q)-+ min (1.4) 

Here L(Q) is a smooth monotone increasing function of the matrix Q; i.e. if Q,> Qa 
(which means that (Qlq,q)> (Qptl,q),Vq E R" 
L(Q,)> L(Q,). 

oft ewfvalently, E (0, Q3 ~~~~~~Q~)~ then 
The monotonfcity condition can be restated in the form ,r where 

8Lh?Q is the gradient of the function L. 
Note that the centre of the ellipsoid G required is equal /2/ to the sum of the oentres 

of the ellipaoide Et. A quadratic form of the vector y may be written as a linear form of (I 
matrix X of rank 1, 

(Qu, I/) = tr (QX), X =i Y*Y 

where the asterisk denotes transposition. Let <Q, X) =i tr (Q, X). Then (1.3) is rewritten 
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in the form 

af, after squaring, 

since both sides of the inequality (1.5) are non-negative numbers. The function on the 
right-hand side of inequality (1.6) is concave on the set of non-negative definite matrices 
(this set is the convex hull of the matrices of rank)10 X = y*y, YER~). 

We will show that the extension of (1.6) to the set of all non-negative definite matrices 
does not introduce additional constraints in problem (1.3), (1.4). 

We will first demonstrate this for a simple problem with the constraint 

(Q, X) > Q, (X) = (A, X>“a (B, X>“s, X =: y*y, Vy E R" (1.7) 

where A and B axe non-negative definite matrices. 
Let p:W+R2 be a linear mapping such that p1 = (A,X), pz = <B, X>, where W is the 

set of non-negative definite matrices. 

ikn?izJ f. The sets W and kyl of the matrices of rank 1 #*y, yERn, have the same image 
under the mapping p. 

proof. Without loss of generality, assume that A and B are diagonal matrices, A = diag 
{o', . . .( a”), B = diag (P, . . ., b"}. Then 

Pl= xa'rXxk' Pz- Z:bkXXk, vx E 14' 

Were and in tbs example at the end of Sect.1 the LndE?x k takes the values 1,2, . . ..n. 
the summation over this index is from 1 to 12. 

Note that ths same point (p1,p3 can be obtained al50 as the image of the matrix rank 1 
8% where #==m . IAe lemma is proved. 

It is e5sential that the function O(X) is representable as a superposition: @=gop, 
where cp:R*+R is defined by the formula 'p (pl,p,)= ptI*p$k Also note that the function 
cp is defined on ~QM cone in the positive orthant of the plane R2 (in particular, when 
B=aA,a>O, this is a ray issuing from the origin). 

The problem of extending (1.7) to the set W without introducing additional constraints 
involves finding a function UY - the minimal concave function on the set W that coincides 
with rD on w,. This problem is solved by the following lemma. 

&s?lm%z 2. 

W(X) = at(X), VXf w. 

Proof. Since any matrix from W is representable as a finite l&near combination of 
matrices from W,, then by the definition of CD', we have 

Hereandin Lemma 3, the index 2. is the number of the element in the linear combination. 
Summation is over all the elements of the representation. 

The last equality follows from Lemma 1. Thus CD'(X) a@ w. But, from the definition 
of UJ', Q'(X) < Q, (X). The lemma is proved. 

From Lemma 2 we obtain that inequality (1.7) is equivalent to the following inequality: 

<Q, X> 2 (A, X>y* <B, X)‘f*, VX ~3 w 

We will prove a similar proposition for the constraint (1.6). This will require the 
following lemma. 

Lem 3. 

(~@,(X)i'=~@k'(X)P VXEW 

Bere an azhitrary finite sum over k is implied. 

Proof. By definition, 

(x (D, (X))’ = inf 
k 
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Note that from the definition of the operation a)-.@ we have the relationship 

{r: @, (X)) ‘ < 2: @, (X) = 2 Q@’ (‘v 
x k rc 

The last equality follows from Lsmma 2. The lemma is proved. 
We have thus justified the extension of inequality (1.6)to the set W, i.e., the constraint 

(1.6) is equivalent to the inequality 

<Q> -0 >iq <Qfl X>"* (Qje X>*f~t VX EW 04 

Note that inequality (1.8) defines the function &(X)-S in&n <Q, X>, which is connected 
with the supporting function Ho(X) of feasible matrices & (i.e., matrices for which the 
corresponding ellipsoids include z1) by the relationship Rn(X)= -Hn (-X). Specifically, 

Given R=(X) we ash parametrize the points Q of the boundary iJ minimizing the scalar 
product (Q, X>: 

Q = %&&3X 0.91 
Formula (1.9) solves problem (1.3), (1.4) for the Linear functional 

L(Q) = <C. Q> 

We have thus proved the following theorem, 

rPkearem 1. The solution of problem (1.31, (1.4) is given by the formula 

(1.10) 

Denote by E~EEE,M...B~EN the ellipsoid E minimizing the performance criterion (1.10) 
and containing the tinkowski sum of the ellipsoids E,,p = 1, 2, . . ..N. We will also use the 

notation E=@&. 

Let us state the main properties of this operation. 

Property 1 (commutativity) : 

Joseph 3 (similar ellipsoids) : 

E (au ~~*Q)EE) E (at, a~'91 = E @I + am 

(a, -t GQ), Vu,> 0, aa> 0 

Property 1 ia obvious, properties 2 and 3 can be verified by substitution into (1.11). 
For an arbitrary performance criterion f1.4), we have the following theorem. 

Theorem 2, The solution of problem (1.31, (1.4) is given by the formula 

Note that for a non-linear performance criterion formula (1.12) is not a direct definition 
of the matrix &, because on the right-hand side of (1.12) the gradient aL/aQ is evaluated 
at the point &.. Therefore, formula (1.12) is an equationthat has tobe solvsd for &. In the 

(Liz) 
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special case r;(Q) = vol E(a, Q), the solution of (1.12) for m = 2 reduces to solving the 
two algebraic equations derived in /2/. Associativity in general does not hold here, but 
properties 1 and 3 are preserved. 

Consider an example of approximating the minimal trace of a right parallelepiped by an 
ellipsoid E with the matrix &. Note that the parallelepiped is the sum of segments represent- 
ing degenerate ellipsoids, each with a single non-zero axis: 

E, = E(O, Q,), Qi = diag(djl, . . ., d,“} 

13,~ = aiagiK, ai >O 

where 6ik is the Kronecker delta. 
For this case, (1.11) gives 

Q = diag(d', . . . . d"). dk =ai(xak) 

Note that in the special case when 
performance criterion (1.10) (e.g., the 
of the axis half-lengths), the results 
for normal random variables. 

the approximating ellipsoid is optimal by the linear 
trace of the ellipsoid matrix - the sum of squares 
are fully consistent with the corresponding operations 

2. &Snt&on of the Feachability region. Let us apply our results in the 
problem of the guaranteed estimation of the state of a linear dynamic system when there are 
several independent external Gturbances 

5' = A (t) 5 + x ui (t) (2.1) 

Here t is the time, x is an n-dimensional phase vector, and ui(t) is the n-dimensional 
vector of controls or disturbance functions satisfyingthe constraints 

ui (t) E E (gi(t), Gi (t)) (2.2) 

where Gi(t) are continuous non-negative definite matrices, and gi (t) are continuous vector 
functions. Let the initial vector be localized in an ellipsoid: 

5 (to) E E (a,, Qo) (2.3) 

Using the finite-difference derivation of the evolution equations of the estimating 
ellipsoid from /2/ and applying the new operation of ellipsoid summation, we obtain differen- 
tial equations describing the motion of the optimal ellipsoids: 

a‘ = A 6) a f&i 0) (2.4) 

where 

9i = 
tr (G, (t) we) 

tr @ww) (2.5) 

The resulting ellipsoid solves the following extremal problem: 

dL (Q)ldt --f min (2.6) 

If we need ellipsoidal estimates that are optimal in the sense of the rate of change 
of the linear performance criterion 

d tr (CQ)ldt --t min 

then the solution of Eqs.(3.5), (3.6) is the same as for problem (2.1)-(2.3) with one (m= 1) 
disturbance.bounded by an ellipsoid with the parameters 

me ellipsoid E (g (t), G (t)) was obtained by summation of the ellipsoids L'(gi(t)> G,(t)) 
so as to ensure tr (G(t)C)+ min. 

Note that the identity of solutions indicated above is based on the associativity 
property of the summation operation in the case of a linear performance criterion. For the 
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general criterion (2.6), this identity does not hold. 

3. Bzampte. 
Let us consider a simple example of the use of the summation operation, which makes it 

possible to carry out a qualitative comparison of the behaviour of the estimation ellipsoid 
in the guaranteed case and the dispersion ellipsoid in stochastic estimation. 

Consilder a linear dynamic system of the form (2.1) with A (L)=O, i.e., 

0' = u; 0, 2 = R* (3.1) 
The guaranteed approach assumes that the unknown control vector u and the initial system 

vector are contained in given sets, We define them by ellipsoids, + (0) = S (01. Q,), u = F (0, G). 
Then clearly the exact reachability region of the given system by the time t is defined as 
the sum of the sets E (a,, QJ and E (0, Gt'). 

We approximate the exact reachability region by the ellipsoid E@,Q) so that trg+ min. 

Hence, E (a, 0) = E h QJ Ea E (0, GP). Computations using (1.11) give 

a = (I~, Q = Q,, + t(aQo+ a-%) + t*G 

a = I/tr G/trQo (3.2) 

Note that formula (3.2) gives an exact solution of Eqs.(2.4), (2.5). This means that, 
for system (3.1), the locally optimal estimates are identical with estimates optimal at the 
terminal time. 

If now u in (3.1) is interpreted as ideal white noise with intensity R (i.e., M {u' (t) 
P(~+T)}= R6(r), where M is the expectation operator and 6 is the Dirac delta-function), and 
the initial vector is assumed to be a normal random variable with given mean (I@ and covariance 
matrix D,, then the parameters of the dispersion ellipsoid in this problem (the expectation 
value a, covariance matrix D) are given by 

n = a,. D = D, + Rt (3.3) 
Thus, the qualitative difference between white noise and disturbances of bounded magnitude 

leads to different evolutionary dependences (3.2) and (3.3). In particular, for large t, the 
size of the estimation ellipsoid (3.2) increases approximately linearly, while the size of 
the dispersion ellipsoid (3.3) is approximately proportional to the square root of time. 
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